Duan Research Group

Hetero-integrated Nanostructures and Nanodevices

Error message

Notice: Undefined index: quantity in omega_views_mini_pager() (line 214 of /var/www/html/duan/sites/all/themes/omega/omega/includes/omega.theme.inc).

News

New graphene 'nanomesh' could change the future of electronics

"Graphene, a one-atom-thick layer of a carbon lattice with a honeycomb structure, has great potential for use in radios, computers, phones and other electronic devices. But applications have been stymied because the semi-metallic graphene, which has a zero band gap, does not function effectively as a semiconductor to amplify or switch electronic signals.

"While cutting graphene sheets into nanoscale ribbons can open up a larger band gap and improve function, 'nanoribbon' devices often have limited driving currents, and practical devices would require the production of dense arrays of ordered nanoribbons — a process that so far has not been achieved or clearly conceptualized.

"But Yu Huang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science, and her research team, in collaboration with UCLA chemistry professor Xiangfeng Duan, may have found a new solution to the challenges of graphene..."

[via newsroom.ucla]

More Info: Graphene Nanomesh

UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu