Publications
Functional Three-Dimensional Graphene/Polymer Composites
Meng Wang, Xidong Duan, Yuxi Xu, Xiangfeng Duan
ACS Nano 10, 7231-7247 (2016)
Integration of graphene with polymers to construct three-dimensional porous graphene/polymer composites (3DGPCs) has attracted considerable attention in the past few years for both fundamental studies and diverse technological applications. With the broad diversity in molecular structures of graphene and polymers via rich chemical routes, a number of 3DGPCs have been developed with unique structural, electrical, and mechanical properties, chemical tenability, and attractive functions, which greatly expands the research horizon of graphene-based composites. In particular, the properties and functions of the 3DGPCs can be readily tuned by precisely controlling the hierarchical porosity in the 3D graphene architecture as well as the intricate synergistic interactions between graphene and polymers. In this paper, we review the recent progress in 3DGPCs, including their synthetic strategies and potential applications in environmental protection, energy storage, sensors, and conducting composites. Lastly, we will conclude with a brief perspective on the challenges and future opportunities.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu