Publications
One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion
Nanostructures have been the focus of considerable interest for solar energy conversion in the areas of renewable green energy sources as well as environmental remediation due to their unique physicochemical properties. Here we highlight the recent efforts on developing new materials for solar energy conversion with a focus on one-dimensional homogeneous and heterogeneous nanowires. We first outline challenges and strategies to develop highly efficient and stable semiconductor materials for solar energy conversion, and then discuss the potential advantages and recent progress in exploring one-dimensional homogeneous and heterogeneous structures. We will particularly focus our discussion on the photovoltaic performance of various one-dimensional nanowire materials. Lastly, the perspectives for further improving the efficiency and stability of the solar energy conversion system using one-dimensional homogeneous and heterogeneous nanowires and their potential applications will be discussed.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu