Duan Research Group

Hetero-integrated Nanostructures and Nanodevices

Publications

Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts

Y. Qu, L. Liao, R. Cheng, Y. Wang, Y. Lin, Y. Huang, and X. Duan

Nano Lett. 10, 1941-1949 (2010)

Photocatalysts are of significant interest in solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum−silicon−silver nanowire heterostructure can be synthesized to integrate a nanoscale metal−semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited a pronounced photovoltaic effect with nearly unity internal quantum efficiency and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including the photocatalytic degradation of organic dyes and the reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to the design and synthesis of a new generation of photoelectric nanosystems with unprecedented efficiency and stability and will have a broad impact in areas including environmental remediation, artificial photosynthesis and solar fuel production.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu