Publications
Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery
Benjamin Papandrea, Xu Xu, Yuxi Xu, Chih-Yen Chen, Zhaoyang Lin, Gongming Wang, Yanzhu Luo, Matthew Liu, Yu Huang, Liqiang Mai, Xiangfeng Duan
Nano Res. 9, 240-248 (2016)
Lithium–sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium–sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene–sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene–sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 96 mAh·g–1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu