Publications
Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions
Zipeng Zhao, Zeyan Liu, Ao Zhang, Xingxu Yan, Wang Xue, Bosi Peng, Huolin L Xin, Xiaoqing Pan, Xiangfeng Duan, Yu Huang
Nature nanotechnology 17, 968-975 (2022)
The proton exchange membrane fuel cell (PEMFC) as an attractive clean power source can promise a carbon-neutral future, but the widespread adoption of PEMFCs requires a substantial reduction in the usage of the costly platinum group metal (PGM) catalysts. Ultrafine nanocatalysts are essential to provide sufficient catalytic sites at a reduced PGM loading, but are fundamentally less stable and prone to substantial size growth in long-term operations. Here we report the design of a graphene-nanopocket-encaged platinum cobalt (PtCo@Gnp) nanocatalyst with good electrochemical accessibility and exceptional durability under a demanding ultralow PGM loading (0.070 mgPGM cm–2) due to the non-contacting enclosure of graphene nanopockets. The PtCo@Gnp delivers a state-of-the-art mass activity of 1.21 A mgPGM–1, a rated power of 13.2 W mgPGM–1 and a mass activity retention of 73% after an accelerated durability test. With the greatly improved rated power and durability, we project a 6.8 gPGM loading for a 90 kW PEMFC vehicle, which approaches that used in a typical catalytic converter.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu