Duan Research Group

Hetero-integrated Nanostructures and Nanodevices


Nanowires for integrated multi color nanophotonics

Y. Huang, X. Duan and C.M. Lieber

Small 1, 142-147 (2005)

Nanoscale light-emitting diodes (nanoLEDs) with colors spanning from the ultraviolet to near-infrared region of the electromagnetic spectrum were prepared using a solution-based approach in which emissive electron-doped semiconductor nanowires were assembled with nonemissive hole-doped silicon nanowires in a crossed nanowire architecture. Single- and multicolor nanoLED devices and arrays were made with colors specified in a predictable way by the bandgaps of the III–V and II–VI nanowire building blocks. The approach was extended to combine nanoscale electronic and photonic devices into integrated structures, where a nanoscale transistor was used to switch the nanoLED on and off. In addition, this approach was generalized to hybrid devices consisting of nanowire emitters assembled on lithographically patterned planar silicon structures, which could provide a route for integrating photonic devices with conventional silicon microelectronics. Lastly, nanoLEDs were used to optically excite emissive molecules and nanoclusters, and hence could enable a range of integrated sensor/detection “chips” with multiplexed analysis capabilities.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu